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ABSTRACT

Curriculum learning (CL) has been widely explored to facilitate the learning of hard-exploration
tasks in reinforcement learning (RL) by training a sequence of easier tasks, often called a curriculum.
While most curricula are built either manually or automatically based on heuristics, e.g. choosing
a training task which is barely beyond the current abilities of the learner, the fact that similar
tasks might benefit from similar curricula motivates us to explore meta-learning as a technique for
curriculum generation or teaching for a distribution of similar tasks. This paper formulates the meta
CL problem that requires a meta-teacher to generate the curriculum which will assist the student to
train toward any given target task from a task distribution based on the similarity of these tasks to one
another. We propose a model-based meta automatic curriculum learning algorithm (MM-ACL) that
learns to predict the performance improvement on one task when the student is trained on another,
given the current status of the student. This predictor can then be used to generate the curricula for
different target tasks. Our empirical results demonstrate that MM-ACL outperforms the state-of-the-
art CL algorithms in a grid-world domain and a more complex visual-based navigation domain in
terms of sample efficiency.

1 INTRODUCTION

Curriculum learning has emerged as a popular approach to address the challenges of sparse rewards and hard
exploration in RL problems (Narvekar et al., 2020). Fig. 1 (a) shows a simple example of a student learning to
navigate from a starting location (red) to a goal location (green), which might benefit from learning source tasks with
closer starting locations (orange). While prior research has focused on developing curriculum learning algorithms that
leverage some prior knowledge from experts, such as designing heuristics to select tasks (Florensa et al., 2018) or
incorporating domain-specific knowledge to boost curriculum performance (Romac et al., 2021), such forms of prior
knowledge are often limited. In this paper, we instead focus on learning how to teach for a given domain, assuming
that a teacher can be learned offline from extensive experience teaching numerous students on a set of similar tasks in
the same domain. As illustrated in Fig. 1 (b), a navigation domain can consist of different environments, but common
domain knowledge might be learned to teach similar navigation tasks. Our goal is to train a generalized teacher that
can identify effective curricula for new students learning an unseen, similar task within the domain. Since a good
teacher can benefit any number of students, this setting places a greater focus on the eventual quality of the learned
teacher, than on how long it takes to train the teacher.

While initial studies on CL in reinforcement learning used manually-designed curricula, based on humans’ knowledge
of the domain (Sanger, 1994), the DRL community has developed a family of mechanisms called Automatic
Curriculum Learning (ACL), which automatically adapts the distribution of source tasks according to the capabilities
of learning agents (Portelas et al., 2020b). Such an adaptation of the source task distribution, however, is typically
performed with heuristics or surrogate objectives. For example, GoalGAN (Florensa et al., 2018) trains a generator
to generate source tasks with intermediate difficulty levels, which can avoid both too hard tasks that are infeasible
to learn and too easy tasks that do not provide any novelty. These heuristics are often suboptimal and can even be

∗ Use footnote for providing further information about author (webpage, alternative address)—not for acknowledging funding
agencies. Funding acknowledgements go at the end of the paper.

1



Published at 2nd Conference on Lifelong Learning Agents (CoLLAs), 2023

Figure 1: A navigation domain with a robot navigating from red to green markers, (a) a sample target task with a set of simpler
source tasks (starting from the orange markers) that form the curriculum; (b) examples of four different target tasks in the same
navigation domain.

arbitrarily bad. For example, the definition of intermediate difficulty level often relies on a manually-picked threshold
of the evaluation metrics, which can lead to transitioning too early to hard tasks that are actually not learnable. In
addition, estimating the heuristics can be costly due to random exploration. For example, GoalGAN has to try random
tasks, measure their difficulty levels, and update the generator that generates the tasks of intermediate difficulty.

Alternatively, the CL problem can naturally be viewed as a meta-learning problem with an inner loop training the agent
on each source task, and an outer loop updating the source task or the teacher module such that an outer objective of
maximizing the agent’s performance on the target task will be improved. Such an explicitly defined outer objective
forms the key to meta-learning (Hospedales et al., 2020). However, this meta-learning view of CL or meta-CL still
remains mostly unexplored.

To solve such a bi-level problem, meta-learning usually trains the meta-representation (teacher) in an offline
setting (Hospedales et al., 2020). Denoting the complete process of a student learning a target task from scratch
under the supervision of a teacher as a lifetime, the teacher is trained in an offline manner over multiple lifetimes,
where each lifetime corresponds to a new student learning a different target task. This process is usually called the
meta-training phase. Then, the teacher is tested in new lifetimes with novel, but related target tasks, which is called the
meta-testing phase. Looking back to the previous example in Fig. 1 (b), the meta-training phase will have the student
taught by the teacher to learn a class of similar navigation tasks but with different landscapes (target tasks 1-3). Such
teaching experiences can improve and prepare the teacher to teach a new target task 4 from this navigation domain. In
this paper, we first formulate such a meta-CL problem that requires meta-training a teacher in an offline setting, which
differs from an online setting where the teacher and the student co-evolve within one single lifetime.

To solve the meta-CL problem, we introduce a model-base meta automatic curriculum learning (MM-ACL) algorithm
that is applicable with any policy gradient RL algorithm. MM-ACL selects the training tasks that will, to the greatest
extent, improve the performance of the student on a given target task. To estimate the improvement, MM-ACLmaintains
a learning dynamics model which predicts the improvement on a given validation task after training on a given source
task for some number of gradient updates. During the meta-training phase, MM-ACL performs “online validation” on
a validation task both before and after the training of a selected source task. Then the improvement of the validation
task given a source task can be measured and used as a data point for learning the learning dynamics model. Instead of
learning a task selection model directly, learning such a learning dynamics model helps to improve sample efficiency
and generalize more easily to different target tasks.

We test MM-ACL on two simple MiniGrid domains and one more complex AI Habitat domain. The method is compared
with a basic multi-task training baseline, an RL-based meta-curriculum learning algorithm, a handcrafted curriculum,
and two state-of-the-art ACL algorithms. MM-ACL outperforms the baselines in terms of sample efficiency, and
requires fewer meta-training lifetimes compared to the RL-based meta-curriculum learning algorithm.

2 RELATED WORK

This section provides an overview of prior research in three sub-fields, namely ACL for RL (Sec. 2.1), meta-RL (Sec.
2.2), and meta-ACL (Sec. 2.3).
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2.1 ACL FOR RL

MM-ACL solves a meta-CL problem that reuses previous teaching experiences for future target tasks, which differs
from existing ACL algorithms that focus on online adaptation of the teacher for a specific target task or no target
task (Dennis et al., 2020; Wang et al., 2020). The implications of this difference are two-fold: First, MM-ACL is an
offline algorithm that trains a teacher module during a meta-training phase, then deploys the teacher without further
updating on a specific set of target tasks. Existing ACL algorithms, on the other hand, are online algorithms which
co-evolve teachers during the training of their students (Portelas et al., 2020a; Florensa et al., 2018). Second, existing
ACL algorithms do not maintain an explicit outer-loop objective. The tasks are selected by heuristics or surrogate
objectives which might not align with the objective of improving the learner’s performance on the set of target tasks.

2.2 META-RL

One important line of research on meta-RL is meta-policy gradients (MPG), which utilizes differentiability of the
update function with respect to some hyper-parameters in the policy-gradient-based RL algorithms. MPG performs
online cross validation (Sutton, 1992) to collect hold-out trajectories to estimate outer-loop loss after every few gradient
updates, then computes a meta-gradient of the hyper-parameters based on the outer-loop loss. Those hyper-parameters
can be thought of as different tasks from a curriculum learning perspective, but are limited to differentiable parameters,
for example, discount factor (Xu et al., 2018), intrinsic reward (Zheng et al., 2018), and auxiliary tasks (Veeriah
et al., 2019). However, the parameters that facilitate learning most are sometimes directly related to the tasks. For
example, transition dynamics and state space are not differentiable without having access to an analytic function of the
transition dynamics. MM-ACL, however, can select tasks that are controlled by any form of parameters including non-
differentiable ones. It deserves noting that, even though most MPG algorithms are online to make use of the efficiency
of the meta-gradient, which differs from the offline setting employed by MM-ACL, MPG can also be performed offline
by introducing episodic memory (Zheng et al., 2020).

Some existing meta-RL approaches do not use meta-gradients, and instead control specific aspects of RL that are
generally non-differentiable, for example, the exploration-exploitation tradeoff (Ishii et al., 2002). They can also be
thought of as a form of curriculum learning, but only limited to one specific aspect of the task, and therefore do not
address the fully general CL problem.

2.3 META-ACL

There is also prior work that formulates the meta-CL problem in a similar fashion to the formalization presented in
this paper. In CMDP’s, introduced by Narvekar & Stone (2019), the teacher is represented as a curriculum policy and
is optimized by an RL algorithm in the outer-loop optimization. Such a curriculum policy has also been demonstrated
to be generalizable to different target tasks (Narvekar & Stone, 2020). However, using RL as the outer-loop optimizer
is extremely costly. Their approach uses hundreds of lifetimes to train an optimal curriculum policy with a tubular
algorithm, where the low-level RL algorithm for learning was deployed in a simple grid-world domain. Modern
deep RL algorithms may suffer from higher variance and longer training steps. Another meta-curriculum learning
framework AGAIN (Portelas et al., 2020c) reuses previously generated curricula based on curriculum distillation.
However, AGAIN has two limitations: i) it is only defined for one particular base ACL algorithm, ALP-GMM (Portelas
et al., 2020a), and cannot be adapted to different ACL algorithms; ii) It aims to optimize a heuristic of absolute
learning progress (used by ALP-GMM) instead of tackling a meta-CL problem directly. Intuitively, based on the
previous curricula, AGAIN exploits the useful source tasks that fulfill the heuristic and prunes the bad tasks from
random exploration to estimate the heuristic. This algorithm aims mostly to reduce the random exploration needed
to estimate the heuristic when teaching a new student, which means that the algorithm is still limited to one specific
heuristic.

Meta-CL has also been explored for supervised learning (Fan et al., 2018; Jiang et al., 2018). However, curriculum
learning for RL encounters special challenges, such as high variance and exploration, that requires specially designed
algorithms to tackle.

Lastly, in contrast to our work, which uses meta-learning to improve curriculum learning, some prior work (Stergiadis
et al., 2021; Wu et al., 2021) focuses on curriculum learning for meta-learning. More specifically, this line of work
aims at automatically adapting the training task distribution for generic meta-learning (not necessary CL) problems.
These types of algorithms are similar to prior ACL algorithms without any meta-learned component.
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3 PRELIMINARIES

This section formally introduces the meta-CL domain, as well as the student and teacher in Sec. 3.1, 3.2, and 3.3,
respectively. In Sec. 3.4, we provide a formal definition of the meta-CL problem.

3.1 META-CL DOMAIN

Meta-curriculum learning aims to leverage a set of target tasks during the meta-training phase to learn how to teach, i.e.
gain knowledge that can improve the learning of the agent on new target tasks that were not seen during meta-training.
We use M := {m} to denote a meta-CL domain defined by a set of all possible tasks m, from which a target task
mtarget can be chosen. For example, in the navigation domain shown in Fig. 1, a target taskm is uniquely defined by a
combination of a navigation environment and start-goal locations. All the possible combinations constitute a meta-CL
domain M. However, it is often the case that the teacher can only control some aspects of the task when solving a
given target task. For example, when the navigation robot in Fig. 1 is situated in the environment specified by the
target task, the teacher can change the start-goal locations, but may not be able to move the student to a completely
different environment (e.g. moving the trees or the house in the navigation domain). For this reason, we factorize a
meta-CL domain into two orthogonal spaces: a controllable space W and an uncontrollable space V . A task m can,
therefore, be represented as a tuple (w, v) with w ∈ W and v ∈ V . Considering the same example of the navigation
domain, w and v are the variables that specify the start-goal locations and the navigation environment respectively.
For a given target task mtarget = (wtarget, vtarget) in a lifetime, a teacher can control the variable w to generate
a sequence of source tasks as a curriculum that can facilitate the learning of mtarget. For the rest of the paper, we
assume that the controllable and uncontrollable spaces are given as a part of the problem.

3.2 STUDENT

We consider a student in a meta-CL problem as an RL algorithm that can improve its policy based on the trajectories
collected from a given training task. We use ψ to denote the current status of a student, which contains all the internal
states of the RL algorithm, such as all the weights of the actor and critic neural networks and the states of the optimizer
if the algorithm is an actor-critic deep RL algorithm based on deep neural networks. Such a student can be updated
from status ψt to ψt+1 during a training iteration t based on a given training task mt, which we formulate as follows:

τt = Rollout(ψt,mt), ψt+1 = Train(ψt, τt) (1)

Here, Train represents a training process that updates the student ψ, and Rollout generates a rollout trajectory τt based
on the current student ψt on the task mt. For example, the training process of REINFORCE (Sutton & Barto, 2018)
with a linearly-decayed learning rate is a simple policy gradient update combined with a learning rate update:

αt+1 = αt − 0.0001, θt+1 = θt − αt∇θtG(τt) (2)

with ψt = (θt, αt) being the student status, θt the parameters of the policy, αt the learning rate, and G(τt) the returns
of τt. Then, during a lifetime lasting N training iterations with a curriculum (m1,m2, ...,mN ), the student, starting
from an initial status ψ0, is updated recursively following Eq. 1, which generates a sequence of student statuses
(ψ0, ψ1, ..., ψN ).

3.3 META-TEACHER

A meta-teacher will dynamically decide on which source tasks to train based on the information of (1) which student is
being trained and (2) what is the target task. As defined in Sec. 3.1 and Sec. 3.2, the student and the target task can be
represented as ψ and (wtarget, vtarget) respectively. However, for complex domains solved by deep RL algorithms, it
might be prohibitive to take ψ as input since it contains all the neural network weights. Instead, in the ACL literature, a
more commonly used representation of a student status is contextual information that comprises the training history of
the student. In this paper, a context c = (wj , Ḡj)

J
j=1 ∈ C is a sequence of J training task-return pairs experienced so

far in a lifetime, where wj is the set of controllable parameters that define a source task (wj , vtarget). As the teacher
cannot control the v parameters, it is set to vtarget throughout the lifetime. Ḡj is the average return of the rollout
trajectories, and C is a set of all possible contextual information.

It is worth noting that the contextual information in our approach consists of the returns rather than the entire
trajectories. This allows for the estimation of the student’s status over a longer horizon that spans hundreds of training
iterations. Trajectory-based histories, on the other hand, are typically limited to only a few iterations, as longer histories
would generate lengthy sequences that even state-of-the-art transformer-based encoders find difficult to encode (Dance
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et al., 2021). The limited horizon fails to capture the full status of the student. For instance, consider the REINFORCE
student with a linearly-decayed learning rate (Eq. 2). With only a few trajectories, the teacher can, at best, determine
the current policy θt but not the learning rate αt the student is using to learn its policy. This highlights the need to
observe the changes in the student’s behavior over an extended period rather than just a limited horizon.

Formally, we define a meta-teacher f as a mapping from a context in C and a target task in M to a probability
distribution over controllable parameter space W . With the teacher being defined, the training task mt in Eq. 1 can be
selected by sampling a controllable parameter wt from the distribution as follows:

wt ∼ f(ct,mtarget) (3)

3.4 THE META-CL PROBLEM

To evaluate a meta-teacher function f ’s performance when teaching a given target task mtarget over a student’s
lifetime, we measure the return of the student ψN on the target task trained after an entire lifetime of N training
iterations, where ψt denotes the student’s status at the t-th iteration. We use G(ψN ,mtarget) to denote such an
evaluated return. Then, a meta-CL problem can formally be defined as finding an optimal teacher such that the
expectation of students’ evaluated returns over a distribution of target tasks p(m) is maximized:

max
f

Emtarget∼p(m)[G(ψN ,mtarget)] (4)

s.t. wt ∼ f(ct,mtarget) ∀t = 0, ..., N − 1

τt = Rollout(ψt,mt), ψt+1 = Train(ψt, τt) ∀t = 0, ..., N − 1

An algorithm that solves the meta-CL problem is allowed to freely sample target tasks from p(m) and teaches the
students on the target tasks during a meta-training phase. These teaching experiences are used to update the teacher
so that the objective defined in Eq. 4 will be improved. During the meta-testing phase, the teacher is evaluated by
having it train new student lifetimes on unseen target tasks sampled from the same distribution p(m). In summary,
the meta-CL problem involves learning an optimal teacher that facilitates the training of any number of students from
the same domain. This objective places a stronger emphasis on improving sample efficiency during the meta-testing
phase, than how long it takes to train such a teacher during the meta training phase.

4 APPROACH

This section describes our proposed method MM-ACL in detail.

4.1 LOCAL LEARNING PROGRESS

The meta-CL problem requires optimizing the teacher f based on an objective that can be evaluated only after an
entire lifetime training of N iterations (Eq. 4). Such a long-term objective, usually referred to as maximizing global
learning progress (Portelas et al., 2020b), is typically considered intractable in hard-exploration domains that may
require a few thousand iterations to solve, even with a good curriculum.

Instead, we consider a short-term objective that maximizes local learning progress, which is defined as the
improvement of the target task performance after training on a source task for a shorter k iterations. The local learning
progress is represented as a functional form Pk(ψi,mi,mtarget) conditioned on the student status ψi, the source task
mi, and the target task mtarget, which we formally define as follows:

Pk(ψi,mi,mtarget) = G(ψi+k,mtarget)− G(ψi,mtarget)

Then, at every i-th iteration with i = 0, k, 2k, ..., N , the approximated meta-CL problem is to solve a bi-level
optimization problem as follows:

max
f

Emtarget∼p(m)[Pk(ψi,mi,mtarget)] (5)

s.t. wi ∼ f(ci,mtarget)

τi+t = Rollout(ψi+t,mi), ψi+i+1 = Train(ψi+t, τi+t) ∀t = 0, ..., k − 1

4.2 LEARNING DYNAMICS MODEL

The short-term objective of maximizing the local learning progress is analogous to some MPG algorithms that optimize
the meta-representations based on online validations with a short interval of k-step iterations (Xu et al., 2018). Such
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algorithms only consider meta-representations that are differentiable w.r.t. the local learning progress. Following the
formulation defined in this paper requires that a derivative ∇wPk(ψ,m,mtarget) of the local learning progress w.r.t.
some controllable parameter w can be computed.

However, MPGs are not applicable in CL, as Pk is non-differentiable with respect to the controllable parameters
wt that control the source tasks unless an analytic form of the transition model is given. An alternative approach is
to approximate the local learning progress Pk(ψ,m,mtarget) with a black box function, and then choose the best
controllable parameters w based on the approximated learning progress.

More specifically, we define a learning dynamics model g : C×W×W×V → R that approximates the local learning
progress Pk(ψ,m,mtarget) with a function g(c, w,wtarget, vtarget). Here, the dependence of the student status ψ
is replaced with the contextual information c as discussed in Sec. 3.3, and the task m is replaced with controllable
and uncontrollable parameters (w, v). Once a learning dynamics model g(c, w,wtarget, vtarget) is learned, a teacher
picks source tasks by sampling the controllable parameters w with the probabilities proportional to the local learning
progress on the target task.

4.3 MM-ACL

Figure 2: (a) the neural network architecture of the learning dynamics model with FCs representing the fully connected layers; (b)
The meta-training pipeline of MM-ACL. More details of the pipeline are presented in Sec. 4.3

With the concept of learning dynamics model, we present Model-based Meta Automatic Curriculum Learning
(MM-ACL), an offline meta-CL algorithm that uses a learning dynamics model with contextual information to generate
curricula that facilitate student learning.

In the meta-learning literature, a task-agnostic setting is typically used, where the meta-learner is required to generalize
over all possible in-distribution meta-tasks without being given the meta-task as an input. We consider a similar setting
for MM-ACL, where the learning dynamics model g must generalize to all possible target tasks without explicitly
knowing the uncontrollable parameters vtarget. However, to effectively teach the student, it is still necessary to
provide the controllable parameters wtarget. Consequently, MM-ACL removes the dependence on vtarget from the
learning dynamics model. Despite this, contextual information can still encode some of the uncontrollable parameter
information from the historical returns, allowing for generalization.

MM-ACL uses a neural network parameterized by ϕ to approximate the learning dynamics model, which we denote
as gϕ(c, w,wtarget). The neural network architecture is shown in Fig. 2 (a). Each task-return pair in the contextual
information is embedded by one fully-connected layer and is fed into a LSTM (Gers et al., 2000) as a sequence of task-
return embeddings. Then, the output from the LSTM is concatenated with the embedding of w and wtarget followed
by a MLP to compute the prediction of local learning progress Pk(ψ,w,wtarget, vtarget) on the target task wtarget.
More details of the learning dynamics model are shown in Appendix A.1.

Algorithm 1 shows the whole pipeline for training gϕ. The training data is stored in a replay buffer D collected from
learners trained from scratch in multiple i.i.d. lifetimes. At every i-th iteration of each lifetime with i = 0, k, 2k, ..., N ,
a training taskwtrain

i is selected based on the SelectTask function (Algorithm 2) that has an exploration probability
p to select the task based on the current learning dynamics model and a probability 1− p to select a randomly sampled
exploratory task (lines 6-7). Once a training task wtrain

i is selected, the student is updated for k iterations and the
history of tasks and returns is appended to the contextual information (lines 8-12). Then, the policies before and after
the update are evaluated on the same randomly sampled validation task wval

i , resulting in the returns Gval
i and Gval

i+k,
respectively (lines 13-16). The contextual information, training task, validation task, and learning progress constitute
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Algorithm 1 MM-ACL

1: Input: Horizon k, RL algorithm Train, meta-CL domain
M =W ×V , target task distribution p(m).

2: Output: ϕ
3: Initialize D ← {}, ϕ
4: for l = 1 to NumLifetime do
5: Initialize ψ0, c0 ← ∅, (wtarget, vtarget) ∼ p(m), t = 0.

6: while i < NumIteration do
7: wtrain

i ← SelectTask(ct, wtarget, ϕ)
8: for t = 0 to k do
9: τi+t ← Rollout(ψi+t, (w

train
i , vtarget))

10: ψi+t+1 ← Train(ψi+t, τi+t)
11: Gtraini+t ← G(τi+t)

12: ci+t+1 ← ci+t ∪ (wtrain
i ,Gtraini+t )

13: end for
14: for j = 1 to NumValidationTask do
15: wval

i ← GetRandomTask(W)
16: Gvali+k ← G(ψi+k, w

val
i , vtarget)

17: Gvali ← G(ψi, w
val
i , vtarget)

18: D ← D ∪ (ct, w
train
i , wval

i ,Gvali+k − Gvali )
19: end for
20: if (i + l ∗ NumIteration) mod UpdateInterval == 0

then
21: ϕ← UpdateModel(D,ϕ,NumEpoch)
22: end if
23: i← i+ k
24: end while
25: end for

Algorithm 2 SelectTask

1: Input: Contextual information c, wtarget, learning
dynamics model ϕ

2: Output: Selected task w
3: Initialize: p← Uniform(0, 1)
4: if p < ExplorationProbability then
5: w ← GetRandomTask(W)

6: else
7: Sample NumRandomTask tasks uniformly and randomly,

call itW†.
8: ∀i ∈ W†, P [i]← Softmax

(
gkϕ(ct, w, wtarget)

)
[i].

9: Sample w ∼ P .
10: end if

a training data point (ci, wtrain
i , wval

i ,Gval
i+k − Gval

i ), which is added into the replay buffer D (line 17). At every fixed
interval of iterations, the parameter ϕ is updated based on the training data in the replay buffer D (lines 19-21). Once
the learning dynamics model is learned, the model can be deployed online following the SelectTask function with
exploration probability p = 0. During the deployment, the contextual information ci is built in the same way as line
12 in Algorithm 1. Notice that during deployment, lines 13 to 21 in Algorithm 1 that perform online validations are
not executed; this omission guarantees that the algorithm does not add extra rollouts and gradient updates. A diagram
of the meta-training pipeline is shown in Fig. 2 (b).

5 EXPERIMENTAL RESULTS

We test MM-ACL in a grid-world domain and a visual-based navigation domain. The domains are designed such that
some form of curriculum is necessary, as training on the target task directly will always fail. We introduce the domains
in detail in their corresponding sections. To evaluate the performance of ACL algorithms in these domains, we use a
metric of iterations to threshold, which is formally defined as follows:

Definition 1 (Iterations to threshold) Given a completed lifetime with a target task mtarget and a sequence of
student statuses (ψi)

N
i=1, the iterations to threshold (ItT) is defined as the minimum index i such that the student’s

past-K evaluated returns on the target task are all greater than or equal to a certain threshold δ with K being a
history length. Denoting ξ = {i | i ∈ [K,N ], G(ψi−j ,mtarget) ≥ δ, ∀j ∈ [0,K]},

ItT =

{
mini{i ∈ ξ} ξ ̸= ∅
N otherwise.

(6)

An algorithm with a low ItT is said to have a high sample efficiency, and vice versa.

The performance of MM-ACL is compared with four different baselines: (1) ALP-GMM; (2) a random curriculum; (3)
a handcrafted curriculum; and, (4) a DQN-based method for solving CMDPs (as done by Narvekar & Stone (2020)),
denoted as DQN-CMDP. Note that ALP-GMM is designed for domains of continuous control. To apply it in discrete
domains, we modified the bandit algorithm from Matiisen et al. (2019) but used the same heuristic as ALP-GMM. For
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Figure 3: (Left) examples of FourRoom environments from two different lifetimes. The yellow arrows indicate the start and goal
rooms for different controllable parameters w. (Right) a top-down-view image of Habitat environment with an agent’s trajectory
of finding a chair in an environment. The blue dot representing the start location, the light blue curve tracing the path taken by the
agent until reaching within 0.5m of a chair, and the pink dots marking the locations of chairs. The agent observes the RGB and
depth images as shown at the right.

simplicity we refer to this customized bandit algorithm as ALP-GMM as well. In addition, due to the large amount
of data required to train DQN-CMDP, we only compare with it in the grid-world domain. In all the experiments, the
students are PPO agents (Schulman et al., 2017) with their policy neural networks and hyper-parameters tuned for
each of the domains, as detailed in Appendix B.

5.1 FOURROOM DOMAIN

We test MM-ACL in the grid-world FourRoom domain based on the widely used MiniGrid environment
by Chevalier-Boisvert et al. (2018). As shown in Figure 3, the target tasks in this domain require an agent to navigate
through four rooms (labeled as room 0, 1, 2, and 3 from left to right) and reach a goal location (green tiles) in the
right-most room (room 3) by executing one of the four discrete actions: move forward, turn left, turn right, and open
the door. Three types of skills are required to pass the rooms: (1) navigate around the blocks (grey tiles) which the
agent cannot overlap with; (2) avoid tiles covered with lava (orange tiles) that cause immediate failure of an episode
once the agent visit them; (3) open the door that blocks the way to the goal location. The only positive reward of
1− 0.0009 ∗ T is assigned upon reaching the goal location, where T is the total number of time steps. In this domain,
a threshold δ = 0.92 and a history length K = 4 are used for measuring the ItT.

As shown in Fig. 3 on the left, different tasks in this domain may have different room configurations (e.g., openings
on the walls) and different start-goal locations. These two types of variations correspond to the uncontrollable space
V and controllable space W respectively. We assume that the start-goal locations can only be varied in a limited way:
w can only specify the rooms from which the start and goal locations are randomly sampled. More specifically, the
controllable space W = {0, 1, 2, 3} is a four-category discrete set with w equal to 0, 1, 2, 3 denoting the tasks of
navigating from room 0 to 3, room 1 to 3, room 2 to 3, and room 1 to 2, respectively. The uncontrollable space V is all
the possible room configurations. Different lifetimes in this domain have the target tasks with the same wtarget = 0,
but different vtarget uniformly sampled from V .

We applied MM-ACL to the FourRoom domain. The learning dynamics model of MM-ACL is trained for 150 lifetimes
during the meta-training phase. Then, the model is tested in five different lifetimes with previously unseen target tasks.
The hyper-parameters of MM-ACL can be found in Appendix A.2. During meta-testing, each lifetime is repeated for
five independent runs with different random seeds. While training a student, the return of the student is evaluated
on the target task for 16 episodes after every training iteration. Fig. 4 (left) shows plots of return on the target task
at different training iterations collected from two meta-testing lifetime. As shown in the figure, MM-ACL achieves
the best sample efficiency with the lowest ItTs in both lifetimes, followed by ALP-GMM whose ItT is 29 more. On
the other hand, both the random and handcrafted curricula fail to reach the threshold for one or a few runs with a
400-iteration budget. The average ItTs over all five lifetimes are reported in Table 1.

5.2 VISUAL-BASED NAVIGATION DOMAIN: HABITAT

We also test MM-ACL in a more complex visual-based navigation Habitat domain realized by AI Habitat (Savva
et al., 2019), illustrated in Fig. 3 on the right. AI Habitat can simulate navigation in a variety of household
environments, constructed from real-world houses (Chang et al., 2017), while providing photo-realistic camera images
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Figure 4: Average returns in the FourRoom and Habitat domains; the shaded areas show the 95% confidence interval.

as observations. We focus on an object-oriented navigation task that requires the agent to navigate to a given type of
object in the environment. At each time step, based on an observation of RGB-D image and target object index, the
agent can take one of three actions: move forward by 0.25 meter; turn left by 30◦, or turn right by 30◦. The episode is
considered successful and a reward of +1 is obtained if the agent’s distance to the closet target object is less than 0.5
meter. In this domain, a threshold δ = 1 and a history length K = 4 are used to measure the ItT.

During each lifetime in the Habitat domain, the agent has to search for one fixed type of object in the same
environment. The uncontrollable space V is, therefore, all the possible object-environment pairs. The controllable
parameter w ∈ W is a variable that specifies the geodesic distance to the closest target object, i.e., given a parameter
value w, the teacher samples a starting location for the agent such that the shortest path between the agent and the
closest object is exactly w. Lastly, the target tasks from different lifetimes have a random vtarget sampled uniformly
from V , and wtarget is the largest possible geodesic distance to the target object in the environment specified by
vtarget.

Similarly to FourRoom, we apply MM-ACL to this domain with the learning dynamics model trained over 80 lifetimes.
Then, the model is deployed in five lifetimes, each repeated for five independent runs. When training a student, the
return of the student is evaluated on the target task for eight episodes after every two training iterations. Fig. 4 (right)
shows two plots of the return on the target task at different training iterations collected from two meta-testing lifetimes.
As seen in the figure, MM-ACL achieves the best sample efficiency in both lifetimes, while both ALP-GMM and the
handcrafted curriculum perform sub-optimally in one of the lifetimes.

FourRoom Habitat

MM-ACL 129± 25 82± 21
DQN-CMDP 202± 39 -
ALP-GMM 158± 28 105± 32
Handcrafted 175± 84 102± 18
MM-ACL-single 175± 73 -
Random 213± 46 126± 54

Table 1: Average ItTs in FourRoom and Habitat.
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Figure 5: The probability distributions used by MM-ACL (left) and
ALP-GMM (right) to sample source tasks at different training iterations
in the same meta-testing lifetime.

6 ANALYSIS

In this section, we conduct an analysis and ablation study. We focus our attention on the grid-world domains due to
the lower computational cost compared to Habitat.

What curriculum does MM-ACL generate? To study why MM-ACL achieves lower sample efficiency, in Fig. 5, we
plot the probability distributions used by MM-ACL and ALP-GMM to sample the tasks at different training iterations.
As seen in the figure, MM-ACL focuses equally on w = 3 and w = 2 at the beginning, which correspond to the two
basic skills of avoiding lava and opening the door. Then it switches to w = 1 that combines the two skills in the same
tasks. Finally, MM-ACL turns to the target task w = 0 after about 50 iterations, when the target task is learnable. On
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the other hand, ALP-GMM heavily exploits w = 2 at the beginning since it gives the highest absolute learning progress,
which actually slows down the learning of the target task.
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Figure 6: (left) the sample efficiencies of
MM-ACL (blue) trained for 10, 50, 100, and
150 lifetimes, with the red solid line marking
the sample efficiency of ALP-GMM, and the
dashed lines marking its 95% confidence interval;
(right) evaluation of the target task return of
the students taught by MM-ACL and a fixed
curriculum generated by MM-ACL.

How many lifetimes does MM-ACL need? To answer this question, we train MM-ACL with limited data collected
from 10, 50, 100 and 150 lifetimes, and test it in the FourRoom domain, similarly to Sec. 5.1. The results are shown
in Fig. 6 (left), in which the sample efficiency of ALP-GMM is marked as the red line. MM-ACL is outperformed by
ALP-GMM with only ten lifetimes, but is comparable to ALP-GMM after 50 lifetimes and clearly outperforms it after
100 lifetimes.

Does MM-ACL generalize to different student statuses? As discussed in Sec. 3.3, a meta-teacher has to infer the
student status from the contextual information if it does not have access to the full representation of the student status
(e.g. the weights of the neural network). To study the ability of MM-ACL to infer and adapt to the current status of
the student, we record a fixed history curriculum generated by MM-ACL in one of the runs, and deploy it on the same
target task, but with five different random seeds that may lead to different student statuses. As shown in Fig. 6 (right),
the curve of evaluated returns of MM-ACL is above the curve of the fixed curriculum throughout the training and shows
much lower variance. On the other hand, the fixed curriculum shows higher variances which indicates a failure to
adapt to different student statuses.

Does MM-ACL benefit from experiencing different target tasks during training? To verify that MM-ACL can
improve its generalization to unseen target tasks from experiencing more target tasks during training, we conduct an
ablation study that trains MM-ACL with the same number of 150 lifetimes, with all the lifetimes having the same single
target task. We denote the resulting model as MM-ACL-single, which is then evaluated in the same way as MM-ACL
in Sec. 5.1. The results in Table 1 (rows 1 and 6) show that MM-ACL-single achieves a lower sample efficiency of
175 ItT compared to 129 by MM-ACL. Notice that this sample efficiency is similar to that of a handcrafted curriculum
(row 5 in Table 1) designed for a few target tasks, which further supports the necessity of generalizing teachers to
different target tasks.

7 CONCLUSION

This paper first formulates a new meta-CL problem, in which a teacher can be benefit from previous lifetimes’ teaching
experience to be able to teach new students and new target tasks. As an initial approach to solving this problem, a
new meta-CL algorithm MM-ACL is proposed that learns a learning dynamics model that predicts the improvement on
one task when trained on another, which can be utilized to select the source task that maximizes the improvement on
the target task. Our empirical results show an improvement of sample efficiency compared to the state-of-the-art ACL
algorithms and existing meta-CL algorithms.

However, MM-ACL suffers from myopia that might lead to failures in cases in which training on multiple source tasks is
required before observing any improvement in the student’s performance on the target task. In addition, we only tested
one type of contextual information based on the history tasks and returns; more informative contextual information
based on the trajectories could also be considered in future work.
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A MM-ACL

A.1 LEARNING DYNAMICS MODEL

A data point that trains the learning dyanmics model is a 5-tuple (ci, wtrain
i , wval

i ,Gval
i ,Gval

i+k), where ci is the context
at the t-th training iteration, Gval

i and Gval
i+k are the returns evaluated on the task wval

i before and after training on the
task wtrain

i for k iterations. Then, the learning dynamics model gϕ(ci, wtrain
i , wval

i ), parameterized by ϕ, is trained to
predict the learning progress Gval

i+k − Gval
i given an input of (ci, wtrain

i , wval
i ). More specifically, the parameters ϕ is

optimized to minimize the mean square error of the prediction of learning progress evaluated over all the data points
in a replay buffer D, or:

min
ϕ

E(ci,wtrain
i ,wval

i ,Gval
i ,Gval

i+k)∼D[(Gval
i+k − Gval

i − gϕ(ci, w
train
i , wval

i ))2]

In addition, since the evaluated return Gval
i is available in each data point, we use the the same parameter ϕ with an

additional head of two fully-connected layers to perform an auxiliary task that predicts Gval
i . The final loss function is

the linear combination of the two losses, which can be written as follows:

min
ϕ

E(ci,wtrain
i ,wval

i ,Gval
i ,Gval

i+k)∼D[(Gval
i+k − Gval

i − gϕ(ci, w
train
i , wval

i ))2 + α ∗ (Gval
i − hϕ(ci, w

train
i , wval

i ))2],

where α is a constant coefficient, and hϕ represents the function that predicts the evaluated return Gval
i . We found that

such an auxiliary task can reduce the over-fitting when the model is tested in new lifetimes.

In the experiments for both the FourRoom and the Habitat domains, we use the same neural network architecture to
represent the learning dynamics model, which we detail as follows. The contextual information ci = ⟨(wj ,Gtrain

j )⟩ij=1
is a sequence of task-return pairs. The model first feeds each task-return pair into a 16-dimensional linear embedding
layer. Then, the output of the sequence of embeddings is fed into two 64-hidden-size layers of LSTMs. The resulting
64-dimensional contextual embedding is concatenated with two 16-dimensional embeddings that embeds wtrain

i and
wval

i respectively. Lastly, the 96-dimensional feature embedding is fed into two fully-connected layers with 64 and
32 hidden units, which outputs the learning progress prediction. In addition, another two 64 × 32 layers are created
to predict the evaluated return. We used the constant coefficient α = 0.1, which is chosen from grid search that
minimizes the loss on hold-out validation data points. The model is optimized by Adam optimizer Kingma & Ba
(2014) with an learning rate of 0.0001 and a batch size of 512. We used a function UpdateModel(D,ϕ,NumEpoch)
that will learn the model on replay buffer D for NumEpoch epochs with the aforementioned hyper-parameters.

A.2 HYPER-PARAMETERS

The hyper-parameters that specify the learning dynamics model are described in Appendix A.1. In the table below, we
list the hyper-parameters that specify the meta-training process.

FourRoom Habitat
NumLifetime 150 120
NumIteration 300 500
NumValidationTask 4 4
Horizon k 1 2
UpdateInterval 45000 20000
NumEpoch 100 100
ExplorationProbability 1 [0.9, 0.5, 0.1]

Note that in the FourRoom domain, UpdateInterval is set to 450000 that only updates the learning dynamics model
once with the data collected purely from random curriculum. This works for the FourRoom domain with relatively
simple controllable parameter space and can speed up the training by parallelizing the training of multiple lifetimes. In
the Habitat domain, the ExplorationProbability is decreased by 0.4 at every 40 lifetimes when the model is updated
for 100 epochs.
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B BASELINES

B.1 STUDENT (PPO)

We used a customized PPO implementation Schulman et al. (2017) for both FourRoom domain and Habitat domain.
We detail the neural network architectures and hyper-parameters as follows.

For FourRoom domain, the observation is composed of a three-channel seven-by-seven image with the channels
encode color, object type and object status respectively. The image is fed into a CNN neural network of sequential
layers: Input → Conv2D[16, 2, 1] → MaxPool[2] → Conv2D[32, 2, 1] → Conv2D[64, 1, 1] → LSTM[128] →
FC[128], where FC is the fully connected layers with the number denoting the number of hidden units, LSTM is
one layer of LSTM with the number denoting hidden size, and Conv2D is the 2D convolution neural network with
the numbers denoting the number of channels, kernel size, and stride respectively. All the layers are followed by the
ReLU activation. This design of the architecture is modified from an RL implementation Lucas Willems (2013) that
is known to solve the MiniGrid environment.

For Habitat domain, the observation is composed of a four-channel 84-by-84 RGB-D image. The image is fed into a
CNN neural network of sequential layers: Input → Conv2D[32, 8, 4] → Conv2D[64, 4, 2] → Conv2D[64, 2, 2] →
FC[128] → FC[128], where FC is the fully connected layers with the number denoting the number of hidden units,
and Conv2D is the 2D convolution neural network with the numbers denoting the number of channels, kernel size,
and stride respectively. All the layers are followed by the ReLU activation.

Other PPO related hyper-parameters are listed as follows:

PPO FourRoom Habitat
Discount factor 0.9 0.9
Ratio clip 0.2 0.2
Entropy coefficient 0.01 0.01
GAE Schulman et al. (2015) coefficient 0.97 0.97
Batch size 256 256
Learning rate 0.0001 0.0001
Number of epochs per update 4 4
Number of steps between updates 2000 8000

B.2 ALP-GMM

The core idea of ALP-GMM is to fit a Gaussian Mixture Model (GMM) every n episodes on recently sampled tasks
concatenated with their respective absolute learning progress (ALP) value. The ALP is defined as the return difference
of the current sampled task and the same task sampled in the history. Since it is impossible to sample exactly the same
task twice for continuous task space, ALP-GMM computes a per-task ALP from the entire history of sampled tasks
using a knn-based approach. The Gaussian from which to sample a new task is then chosen proportionally to its
respective learning progress. The original ALP-GMM is applied to the Habitat domain with the hyper-parameters
listed as follows:

ALP-GMM (continuous) Habitat
Fit rate 100
Buffer size 200
Random task ratio 0.2
Number of bootstrap episodes 50
Number of mixture models [2, 3, 4, 5]

ALP-GMM (discrete) FourRoom
Buffer size 50
Random task ratio 0.2

For the FourRoom domain with discrete task space, instead of fitting a GMM, ALP-GMM maintains one replay buffer
of the returns for each of the tasks. The ALP is measured by the return difference between the current task and the
last sampled task in the same reply buffer. Then, the tasks are sampled proportional to the their average ALPs in the
replay buffers. The related hyper-parameters are as follows:
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B.3 DQN-CMDP

DQN-CMDP models the curriculum learning problem as Markov Decision Process (MDP) and solves the MDP with a
standard DQN algorithm. More specifically, the action space of such an MDP is the uncontrollable task space W , and
the state space is the space of contextual information C. An episode of this MDP is an entire lifetime that terminates
when the evaluated return reaches the threshold (the same criteria used to compute the iterations to threshold). The
teacher receives a +10 reward only when the evaluated return reaches the threshold.

We only applied DQN-CMDP to the FourRoom domain that uses discrete task space. We used the same encoder as
described in Appendix A.1 to encode the contextual information. Then, the extracted feature embedding is fed into a
64× 32 fully-connected layers to output a value prediction. Such a DQN policy is trained for the same number of 150
lifetimes (episodes) for comparison.

B.4 HANDCRAFTED CURRICULUM

The handcrafted curricula are empirically created based on their performances on the target tasks that are different
from the five hold-out target tasks used for the meta-testing. For the FourRoom domain, the handcrafted curriculum
trains a student on controllable parameter w = 2, w = 3, w = 1, and w = 0 for 50k, 50k, 50k, and 100k time steps
respectively. For the Habitat domain, the handcrafted curriculum trains a student on controllable parameter w = 4.5,
w = 5.75, w = 7, w = 8.25, w = 9.5, w = 10.75, and w = 12 with each trained for 200k steps, and finally the target
task trained until the end of the lifetime.
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